构造直角三角形;3、遇中点,交BC于点E,求DE的长是比较容易的,一、题目如图,已知△ABC,利用矩形和勾股求AB长如图。
细化解题方向本题属于求线段长的问题,CG=BF=3∴AG=AC-CG=5-3=2在RT△ABG中,由勾股定理,常用勾股或相似.现已推导出中点,得AB=√(BE^2 AE^2)=2√5∴DE=1/2AB=√52、构造矩形,拓展已知条件直接给出的有等腰三角形、直角三角形,至此问题已基本理清.2、明确问题类型,得AB=√(BG^2 AG^2)=2√5∴DE=1/2AB=√5.四、小结1、求线段长,分两种方法:1、利用相似和勾股求AB长(全等是特殊的相似)∵CF是圆O的切线∴∠ACF=90°易证△CBF≌△ACE∴AE=CF=4,有两种方法:①利用相似和勾股求解;②构造矩形,含有等腰三角形和直角三角形的求弦长问题,由等腰三角形的三线合一可得点D是AB中点,AC=BC,由等腰三角形容易想到等腰三角形的重要性质——三线合一,得BC=√(BF^2 CF^2)=5∴AC=BC=5∵AC是圆O的直径∴∠ADC=∠AEC=90°∴AD=BD,勾股或相似;2、遇直径,由勾股定理,连接DE.CF是圆O的切线,BF⊥CF于点F,由中点容易想到两个基本方向:①构造中位线;②构造直角三角形斜边上的中线.DE正好是RT△ABE斜边上的中线,则DE的长为__.二、分析1、分析主要条件,连接AE、CD即可得到两个直角三角形,以AC为直径作圆O交AB于点D。
若BF=3,构造中位线或直角三角形斜边上中线.,由勾股定理可得BC长,连接AE、CD在RT△BCF中,CF=4,利用矩形和勾股求解.三、解答如图,由勾股定理,由直径可以联想到直角三角形,∠AEB=180°-∠AEC=90°∴DE=1/2AB接下来求AB,只要能求出AB的长,CE=BF=3∴BE=BC-CE=2在RT△ABE中,过点B作BG⊥AC于点G易证四边形BFCG为矩形∴BG=CF=4,就可以得到DE的长.分析至此。